If the tangent to the curve $y^2+3x-7=0$ at the point (h, k) is parallel to the line $x-y =4, $ then the value of k is : |
$-\frac{2}{3}$ $-\frac{3}{2}$ $\frac{3}{2}$ $\frac{2}{3}$ |
$-\frac{3}{2}$ |
The correct answer is Option (2) → $-\frac{3}{2}$ $x-y=4$ $⇒y=x-4$ ∴ Slope = $m=1$ $[y=mx+c]$ ∴ Slope of tangent to the curve must be 1. $⇒f'(x)=2y\frac{dy}{dx}+3=0$ $⇒\frac{dy}{dx}=-\frac{3}{2y}$ $∴-\frac{3}{2k}=1⇒k=-\frac{3}{2}$ |