The point on the curve $y=\cos x-1, x \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ at which tangent is parallel to the x-axis is: |
$(\pi,-2)$ $(-2, \pi)$ $(-\pi, 2)$ $(2,-\pi)$ |
$(\pi,-2)$ |
The correct answer is Option (1) → $(\pi,-2)$ if tangent is parallel to x axis $⇒\frac{dy}{dx}=0$ $y=\cos x-1$ $⇒\frac{dy}{dx}=\sin x=0$ $⇒x=π$ as $x∈[\frac{π}{2},\frac{3π}{2}]$ so $y=\cos π-1⇒y=-2$ $x,y=π,-2$ |