If tan A = $\frac{1.1}{6}$, then what is the value of (4cos A - 7sin A) ? Given that A is an acute angle ? |
$2\frac{14}{61}$ $2\frac{41}{71}$ $2\frac{14}{71}$ $2\frac{41}{61}$ |
$2\frac{41}{61}$ |
tanA = \(\frac{1.1}{6}\) = \(\frac{11}{60}\) { tan A = = \(\frac{P}{B}\) } By using pythagoras theorem , P² + B² = H² 11² + 60² = H² H = 61 Now, 4cos A - 7sin A = 4 × \(\frac{B}{H}\) - 7 × \(\frac{P}{H}\) = 4 × \(\frac{60}{61}\) - 7 × \(\frac{11}{61}\) = 2 × \(\frac{41}{61}\) |