If $\vec p$ and $\vec q$ are two unit vectors such that $|\vec p+\vec q| = \sqrt{2}$, then which of the following are correct? (A) $|\vec p| = |\vec q|= 1$ Choose the correct answer from the options given below: |
(A) and (C) only (B) and (C) only (A), (C) and (D) only (A), (B) and (D) only |
(A), (B) and (D) only |
The correct answer is Option (4) → (A), (B) and (D) only Given: $\vec{p}$ and $\vec{q}$ are unit vectors and $|\vec{p} + \vec{q}| = \sqrt{2}$ Then: $|\vec{p} + \vec{q}|^2 = (\vec{p} + \vec{q}) \cdot (\vec{p} + \vec{q}) = \vec{p} \cdot \vec{p} + 2\vec{p} \cdot \vec{q} + \vec{q} \cdot \vec{q}$ $= |\vec{p}|^2 + |\vec{q}|^2 + 2 \vec{p} \cdot \vec{q}$ $= 1 + 1 + 2\vec{p} \cdot \vec{q} = 2 + 2\vec{p} \cdot \vec{q}$ Given: $|\vec{p} + \vec{q}| = \sqrt{2} \Rightarrow |\vec{p} + \vec{q}|^2 = 2$ $\Rightarrow 2 + 2\vec{p} \cdot \vec{q} = 2 \Rightarrow \vec{p} \cdot \vec{q} = 0$ So, $\vec{p}$ and $\vec{q}$ are orthogonal (perpendicular) unit vectors Now compute: $(4\vec{p} - \vec{q}) \cdot (2\vec{p} + \vec{q})$ $= 4\vec{p} \cdot 2\vec{p} + 4\vec{p} \cdot \vec{q} - \vec{q} \cdot 2\vec{p} - \vec{q} \cdot \vec{q}$ $= 8|\vec{p}|^2 + 4(\vec{p} \cdot \vec{q}) - 2(\vec{p} \cdot \vec{q}) - |\vec{q}|^2$ $= 8(1) + 4(0) - 2(0) - 1 = 8 - 1 = 7$ Final Answers: (A) ✔️ $|\vec{p}| = |\vec{q}| = 1$ — Given (B) ✔️ $\vec{p} \cdot \vec{q} = 0$ — Orthogonal (C) ❌ Not collinear, since they are orthogonal (D) ✔️ Value of dot product is 7 |