If $f(x)=\frac{\sin (x+\alpha)}{\sin (x+\beta)}, \alpha \neq \beta$, then f(x) has |
maximum at x = 0 minimum at x = 0 neither maximum nor minimum none of these |
neither maximum nor minimum |
We have, $f(x)=\frac{\sin (x+\alpha)}{\sin (x+\beta)}$ Clearly, $f(x)$ is defined for all $x \neq-\beta$ Now, $f'(x)=\frac{\sin (x+\beta) \cos (x+\alpha)-\cos (x+\beta) \sin (x+\alpha)}{\sin ^2(x+\beta)}$ $\Rightarrow f'(x)=\frac{\sin (\beta-\alpha)}{\sin ^2(x+\beta)} \neq 0$ as $\alpha \neq \beta$ Hence, $f(x)$ has neither a maximum nor a minimum. |