The maximum value of $f(x) = (\frac{1}{x})^x$ is |
$e^{-1/e}$ $(\frac{1}{e})^e$ $e^{1/e}$ $(\frac{1}{e})^{-e}$ |
$e^{1/e}$ |
The correct answer is Option (3) → $e^{1/e}$ Given: Function $f(x) = \left( \frac{1}{x} \right)^x = x^{-x}$ Let: $y = x^{-x}$ Taking natural log: $\ln y = -x \ln x$ Differentiating both sides: $\frac{1}{y} \cdot \frac{dy}{dx} = -\ln x - 1$ $\frac{dy}{dx} = y(-\ln x - 1) = x^{-x}(-\ln x - 1)$ Set $\frac{dy}{dx} = 0$: $-\ln x - 1 = 0 \Rightarrow \ln x = -1 \Rightarrow x = \frac{1}{e}$ Maximum value: $f\left(\frac{1}{e}\right) = \left(\frac{1}{\frac{1}{e}}\right)^{\frac{1}{e}} = e^{1/e}$ ∴ Maximum value of $f(x) = x^{-x}$ is: $e^{1/e}$ |