Chords AB and CD of a circle intersect externally at P. If AB = 7 cm, CD = 1 cm and PD = 5 cm, then 50% of the length of PA (in cm) is: |
5 10 8 3 |
5 |
Let PB = a cm PB x PA = PD x PC ⇒ a (a + 7) = 5(5 + 1) ⇒ \( { a}^{2 } \) + 7a = 30 ⇒ \( { a}^{2 } \) + 7a - 30 = 0 ⇒ \( { a}^{2 } \) + 10a - 3a - 30 = 0 ⇒ a(a + 10)(a - 3) = 0 ⇒ a + 10 = 0 ⇒ a = - 10 (not possible) Therefore a - 3 = 0 , a = 3 PB = 3 cm As, PA = PB + BA PA = 3 + 7 = 10 cm 50% of PB = \(\frac{10}{2}\) = 5 cm. |