Sides of a triangle are 9 cm, 6 cm and 5 cm. What is the value of circumradius of this triangle ? |
$\frac{9\sqrt{3}}{4}$ cm $\frac{9\sqrt{3}}{5}$ cm $\frac{27\sqrt{2}}{8}$ cm $\frac{9\sqrt{2}}{2}$ cm |
$\frac{27\sqrt{2}}{8}$ cm |
Let be assume a, b and c is the sides of the triangle. = Area of triangle = \(\sqrt {s(s\;-\;a)(s\;-\;b)(s\;-\;c) }\) = s = \(\frac{a\;+\;b\;+\;c}{2}\) = \(\frac{20}{2}\) = 10 cm = \(\sqrt {10(10\;-\;9)(10\;-\;6)(10\;-\;5) }\) = A = \(\sqrt {200 }\) = A = 10\(\sqrt {2 }\) = R = \(\frac{abc}{4A}\) = R = \(\frac{9 \;×\; 6\;×\;5 }{4\;×\;10√2}\) = R = \(\frac{270}{40√2}\) = R = \(\frac{27√2}{8}\) cm Therefore, R is \(\frac{27√2}{8}\) cm. |