The electric field in a certain region is acting radially outward and is given by $E = Ar^2$. A charge contained in a sphere of radius 'a' centred at the origin of the field, will be given by |
$4πε_0Aa^3$ $πε_0Aa^3$ $4πε_0Aa^4$ $ε_0Aa^3$ |
$4πε_0Aa^4$ |
The correct answer is Option (3) → $4πε_0Aa^4$ Given electric field: $ E = A r^2 $ Using Gauss’s law: $ \Phi_E = \oint \vec{E} \cdot d\vec{S} = \frac{Q}{\epsilon_0} $ On a spherical surface of radius $a$: $ E = A a^2 $ So, flux: $ \Phi_E = E \cdot 4 \pi a^2 = (A a^2)(4 \pi a^2) = 4 \pi A a^4 $ Therefore, enclosed charge: $ Q = \epsilon_0 \Phi_E = \epsilon_0 (4 \pi A a^4) $ Charge contained = $ 4 \pi \epsilon_0 A a^4 $ |