Match List I with List II
Choose the correct answer from the options given below : | ||||||||||||||||||||
A-IV, B-III, C-I, D-II A-III, B-II, C-I, D-IV A-III, B-IV, C-II, D-I A-II, B-I, C-IV, D-III |
A-III, B-IV, C-II, D-I |
The correct answer is Option (3) → A-III, B-IV, C-II, D-I (A) $f(x)=x^2-8x+17$ for min. value $f'(c)=0$ $⇒2c-8=0$ $⇒c=\frac{8}{2}=4$ Now, $x=4$ to have min. value $f''(c)>0$ $⇒2>0$ $∴f(4)=16-8×4+17=33-32=1$ (III) (B) $f(x)=x+\frac{1}{x}$ for max. and min. value $f'(c)=0$ $⇒1-\frac{1}{c^2}=0$ $⇒c^2-1=0$ $⇒(c-1)(c+1)=0$ $⇒c=1\,or\,-1$ for min. value $f''(c)<0$, $f''(c)=\frac{2}{c^3}$ $f''(1)=2>0$ ∴ At $f(1)$ we have min. value $∴f(1)=1+\frac{1}{1}=2$ (IV) (C) for max. value, $f(-1)=-1-1=-2$ (II) (D) Maximum value of $e^x$ does not exist as it will continue till $+∞$. (I) |