If $f (x +1) + f (x −1) = 2 f (x)$ and $f(0) = 0$, then $f(n), n ∈ N$, is |
$nf(1)$ $\{f(1)\}^n$ 0 none of these |
$nf(1)$ |
$f (x +1) + f (x −1) = 2 f (x) , f (0) = 0$ Putting x = 1, $f(2) + f(0) = 2f(1), ∴ f(2) = 2f(1)$ Let $f(k) = kf(1)$ for $k ≤ n$ Then $f(n + 1) + f(n − 1) = 2f(n)$ $⇒ f (n +1) = 2(nf (1)) − f (n −1) = 2nf (1) − (n −1) f (1) = (n +1) f (1)$ $∴ f(n) = nf(1)$ for all $n ∈ N.$ |