The ratio of Earth's orbital angular momentum (about the Sun) to its mass is 4.4 × 1015 m2s–1. The area enclosed by the earth's orbit is approximately. |
1 × 1022 m2 3 × 1022 m2 5 × 1022 m2 7 × 1022 m2 |
7 × 1022 m2 |
Since Areal velocity = $\frac{\text{Area Swept}}{\text{Time for one Revolution of Earth about the sun}}$ Further Areal velocity = $\frac{L}{2 M}$ ⇒ Area Swept = $\left(\frac{L}{2 M}\right)\left(\begin{array}{c}\text { Time for one } \\ \text { Revolution of Earth } \\ \text { about the sun }\end{array}\right)$ Area Swept = $\frac{1}{2}\left(4.4 \times 10^{15}\right)(365 \times 24 \times 60 \times 60)$ ⇒ Area Swept = $7 \times 10^{22} ~m^2$ |