If $\overline{E}$ and $\overline{F}$ are the complementary events of events E and F respectively and if 0 < P(F) < 1, then (a) $P(E/F) +P(\overline{E}/F)=1$ (b) $P(E/F) +P(E/\overline{F})=1$ (c) $P(\overline{E}/F) +P(E/\overline{F})=1$ (d) $P(E/\overline{F}) +P(\overline{E}/\overline{F})=1$ |
(a) and (d) (a) and (b) (b) and (d) (b) and (c) |
(a) and (d) |
Since E/F and $\overline{E}/F$ are complementary events. $∴P(E/F) +P(\overline{E}/F)=1$ Similarly, $ E/\overline{F}$ and $\overline{E}/\overline{F}$ are also complementary events. $∴P(E/\overline{F}) +P(\overline{E}/\overline{F})=1$ |