Define a function $f:\mathbb{R}\rightarrow \mathbb{R}$ as $f(x)=\begin{cases}\frac{x}{|x|}& \text{if}\hspace{.2cm} x <0\\ -1 & \text{otherwise} \end{cases}$. Then $f$ is |
A continuous function Discontinuous at 0 Continuous everywhere except 0 None of the above |
A continuous function |
The correct answer is Option (1) → A continuous function $f:\mathbb{R}\rightarrow \mathbb{R}$ as $f(x)=\begin{cases}\frac{x}{|x|}& \text{if}\hspace{.2cm} x <0\\ -1 & \text{otherwise} \end{cases}$ and, $\lim\limits_{x \to 0}\frac{x}{|x|}=\lim\limits_{h \to 0}\frac{h}{-h}=-1$ $\lim\limits_{h \to 0^+}-1=-1$ and, $f(0)=-1$ ∴ it is a continuous function. |