Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Vectors

Question:

If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\vec{0}$, then the value of $\vec{a} . \vec{b}+\vec{b} . \vec{c}+\vec{c} . \vec{a}$ is:

Options:

$\frac{1}{2}$

$\frac{3}{2}$

$-\frac{3}{2}$

0

Correct Answer:

$-\frac{3}{2}$

Explanation:

The correct answer is Option (3) → $-\frac{3}{2}$

$\vec a+\vec b+\vec c=\vec 0$

$⇒(\vec a+\vec b+\vec c).(\vec a+\vec b+\vec c)=0$

$⇒|\vec a|^2+|\vec b|^2+|\vec c|^2+(\vec a.\vec b+\vec b.\vec c+\vec c.\vec a)=0$

so $1+1+1+2(\vec a.\vec b+\vec b.\vec c+\vec c.\vec a)=0$

so $\vec a.\vec b+\vec b.\vec c+\vec c.\vec a=-\frac{3}{2}$