If $x^2 -\sqrt{7}x +1 =0$, then $(x^3 + x^{-3}) = ?$ |
$7\sqrt{7}$ $4\sqrt{7}$ $10\sqrt{7}$ $3\sqrt{7}$ |
$4\sqrt{7}$ |
If x + \(\frac{1}{x}\) = n then, $x^3 +\frac{1}{x^3}$ = n3 - 3 × n If $x^2 -\sqrt{7}x +1 =0$, then $(x^3 + x^{-3}) = ?$ divide by x on both sides in $x^2 -\sqrt{7}x +1 =0$ x + \(\frac{1}{x}\) = $\sqrt{7}$ then $(x^3 + x^{-3})$ = ($\sqrt{7}^3$) - 3 × $\sqrt{7}$ $(x^3 + x^{-3})$ = 7$\sqrt{7}$ - 3$\sqrt{7}$ = $4\sqrt{7}$ |