If the lines $\frac{1-x}{3}=\frac{y-2}{2\lambda }=\frac{z-3}{2}$ and $\frac{x-1}{3\lambda }=\frac{y-1}{1}=\frac{6-z}{5}$ are perpendicular then value of $\lambda $ is : |
$-\frac{7}{10}$ $-\frac{10}{7}$ $\frac{10}{7}$ $\frac{7}{10}$ |
$-\frac{10}{7}$ |
The correct answer is Option (2) → $-\frac{10}{7}$ $l_1:\frac{1-x}{3}=\frac{y-2}{2\lambda }=\frac{z-3}{2}$, $l_2:\frac{x-1}{3\lambda }=\frac{y-1}{1}=\frac{6-z}{5}$ $l_1⊥l_2⇒-3×3λ+2λ×1+2×-5=0$ so $-9λ+2λ-10=0$ $-10=7λ$ $λ=-\frac{10}{7}$ |