Match List-I with List-II [.] denotes the greatest integer function.
Choose the correct answer from the options given below: |
(A)-(II), (B)-(III), (C)-(IV), (D)-(I) (A)-(IV), (B)-(I), (C)-(II), (D)-(III) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) (A)-(I), (B)-(II), (C)-(III), (D)-(IV) |
(A)-(IV), (B)-(I), (C)-(II), (D)-(III) |
The correct answer is Option (2) → (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
Evaluating each integral: (A) $\int_0^3 [x]\,dx$ $= \int_0^1 0\,dx + \int_1^2 1\,dx + \int_2^3 2\,dx = 0 + 1 + 2 = 3$ (A) → (IV) (B) $\int_0^1 [2x]\,dx$ $2x \in [0, 2) \Rightarrow [2x] = 0$ on $[0, \frac{1}{2})$, $1$ on $[\frac{1}{2}, 1)$ $= \int_0^{1/2} 0\,dx + \int_{1/2}^{1} 1\,dx = 0 + \frac{1}{2} = \frac{1}{2}$ (B) → (I) (C) $\int_0^1 [3x]\,dx$ $= \int_0^{1/3} 0\,dx + \int_{1/3}^{2/3} 1\,dx + \int_{2/3}^1 2\,dx$ $= 0 + \frac{1}{3} + \frac{2}{3} = 1$ (C) → (II) (D) $\int_0^1 [4x]\,dx$ $= \int_0^{1/4} 0\,dx + \int_{1/4}^{1/2} 1\,dx + \int_{1/2}^{3/4} 2\,dx + \int_{3/4}^1 3\,dx$ $= 0 + \frac{1}{4} + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 3 = \frac{1}{4} + \frac{1}{2} + \frac{3}{4} = \frac{3}{2}$ (D) → (III) |