The value of $\left|\begin{array}{ccc}\sin \theta & \cos \theta & \sin 2 \theta \\ \sin \left(\theta+\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) & \sin \left(2 \theta+\frac{4 \pi}{3}\right) \\ \sin \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \sin \left(2 \theta-\frac{4 \pi}{3}\right)\end{array}\right|$ is : |
0 1 2 can't find |
0 |
Operating R1 → R1 + R2 + R3 and using trigonometric identities, the given determinant $=\left|\begin{array}{ccc}\sin \theta+2 \sin \theta\left(-\frac{1}{2}\right) & \cos \theta+2 \cos \theta\left(-\frac{1}{2}\right) & \sin 2 \theta+2 \sin 2 \theta\left(-\frac{1}{2}\right) \\ \sin \left(\theta+\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) & \sin \left(2 \theta+\frac{4 \pi}{3}\right) \\ \sin \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \sin \left(2 \theta-\frac{4 \pi}{3}\right)\end{array}\right|$ $=\left|\begin{array}{ccc}0 & 0 & 0 \\ \sin \left(\theta+\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) & \sin \left(2 \theta+\frac{4 \pi}{3}\right) \\ \sin \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \sin \left(2 \theta-\frac{4 \pi}{3}\right)\end{array}\right|=0$ Hence (1) is the correct answer. |