Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Matrices

Question:

The value of $\left|\begin{array}{ccc}\sin \theta & \cos \theta & \sin 2 \theta \\ \sin \left(\theta+\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) & \sin \left(2 \theta+\frac{4 \pi}{3}\right) \\ \sin \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \sin \left(2 \theta-\frac{4 \pi}{3}\right)\end{array}\right|$ is :

Options:

0

1

2

can't find

Correct Answer:

0

Explanation:

Operating R1 → R1 + R2 + R3 and using trigonometric identities, the given determinant

$=\left|\begin{array}{ccc}\sin \theta+2 \sin \theta\left(-\frac{1}{2}\right) & \cos \theta+2 \cos \theta\left(-\frac{1}{2}\right) & \sin 2 \theta+2 \sin 2 \theta\left(-\frac{1}{2}\right) \\ \sin \left(\theta+\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) & \sin \left(2 \theta+\frac{4 \pi}{3}\right) \\ \sin \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \sin \left(2 \theta-\frac{4 \pi}{3}\right)\end{array}\right|$

$=\left|\begin{array}{ccc}0 & 0 & 0 \\ \sin \left(\theta+\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) & \sin \left(2 \theta+\frac{4 \pi}{3}\right) \\ \sin \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \sin \left(2 \theta-\frac{4 \pi}{3}\right)\end{array}\right|=0$

Hence (1) is the correct answer.