If y = f(x) be a differentiable function ∀ x ∈ R, then which one of the following is always true: |
$\frac{d^2y}{dx^2}-(\frac{d^2x}{dy^2})^{-1}=0$ $\frac{d^2y}{dx^2}+(\frac{dy}{dx})^3\frac{d^2x}{dy^2}=0$ $(\frac{d^2y}{dx^2})^{-1}+(\frac{dy}{dx})^3\frac{d^2x}{dy^2}=0$ none of these |
$\frac{d^2y}{dx^2}+(\frac{dy}{dx})^3\frac{d^2x}{dy^2}=0$ |
We have $\frac{dy}{dx}=(\frac{dx}{dy})^{-1}$ $\frac{d^2y}{dx^2}=-(\frac{dx}{dy})^{-2}\frac{d}{dx}(\frac{dx}{dy})=-(\frac{dy}{dx})^2(\frac{d^2x}{dy^2})\frac{dy}{dx}=\frac{d^2y}{dx^2}+(\frac{dy}{dx})^3\frac{d^2x}{dy^2}=0$ Hence (B) is the correct answer. |