Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Applications of Derivatives

Question:

The area of the region bounded by the curve $y=x^2+2, y=-x, x=0$ and x=1 is :

Options:

$\frac{5}{16}$

$\frac{7}{16}$

$\frac{17}{6}$

$\frac{6}{17}$

Correct Answer:

$\frac{17}{6}$

Explanation:

The correct answer is Option (3) → $\frac{17}{6}$

so area = $\int\limits_0^1x^2+2dx+\frac{1}{2}×1×1$

$=\left[\frac{x^3}{x}+2x\right]_0^1+\frac{1}{2}$

$=\frac{7}{3}+\frac{1}{2}=\frac{17}{6}$