If $λ_1$ and $λ_2$ are the longest wavelengths of the Lyman and Paschen series respectively, then $λ_1:λ_2$ is: |
1 : 30 1 : 3 7 : 108 7 : 50 |
7 : 108 |
The correct answer is Option (3) → 7 : 108 Using Rydberg formula, $\frac{1}{λ}=R_H\left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)$ for Lyman series: $n_f=1,n_i=2$ $\frac{1}{λ_1}=R_H\left(1-\frac{1}{4}\right)$ $⇒λ_1=\frac{4}{3R}$ for Pashen series: $n_f=3,n_i=4$ $\frac{1}{λ_2}=R_H\left(\frac{1}{9}-\frac{1}{16}\right)$ $⇒λ_2=\frac{144}{7R}$ $∴\frac{λ_1}{λ_2}=\frac{7}{108}$ |