Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Matrices

Question:

If $A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$ such that $ad - bc ≠ 0$, then $A^{-1}$, is

Options:

$\frac{1}{ad-bc}\begin{bmatrix}d&-b\\c&a\end{bmatrix}$

$\frac{1}{ad-bc}\begin{bmatrix}d&b\\-c&a\end{bmatrix}$

$\begin{bmatrix}d&-b\\c&a\end{bmatrix}$

none of these

Correct Answer:

$\frac{1}{ad-bc}\begin{bmatrix}d&-b\\c&a\end{bmatrix}$

Explanation:

We have, $|A|= ad - bc ≠ 0$

Cofactor of $a_{11}=d$, Cofactor of $a_{12} = -c$

Cofactor of $a_{21}=-b$, Cofactor of $a_{22} = a$

$∴A^{-1}=\frac{1}{|A|}adj\,A=\frac{1}{ad-bc}\begin{bmatrix}d&-b\\-c&a\end{bmatrix}$.