If the system of equations $x-ky-z=0, kx-y-z=0, x+y-z=0$ has a non-zero solution, then the possible values of k are |
-1, 2 1, 2 0, 1 -1, 1 |
-1, 1 |
The given system of equations has non-zero i.e. non-trivial solution. $∴\begin{vmatrix}1&-k&-1\\k&-1&-1\\1&1&-1\end{vmatrix}=0$ $⇒\begin{vmatrix}1&-k&-1\\k-1&-1+k&0\\0&1+k&0\end{vmatrix}=0$ [Applying $R_2 → R_2-R_1$ and $R_3 →R_3-R_1$] $⇒-(k^2-1)=0⇒ k=±1$ |