Target Exam

CUET

Subject

General Test

Chapter

Quantitative Reasoning

Topic

Trigonometry

Question:

Solve the following equation.

$θ : 2 cos^2 θ + ( 4 + \sqrt{3}) sin θ -  2( 1 + \sqrt{3}) = 0 $ where θ is an acute angle.

 

Options:

30°

45°

15°

60°

Correct Answer:

60°

Explanation:

$ 2 cos^2 θ + ( 4 + \sqrt{3}) sin θ -  2( 1 + \sqrt{3}) = 0 $

{ sin²θ + cos²θ = 1 }

 2 ( 1 - sin²θ ) + 4 sinθ + √3 sinθ - 2 - √3 = 0

2 - 2 sin²θ + 4 sinθ + √3 sinθ - 2 - √3  = 0 

 2 sin²θ-  4 sinθ - √3 sinθ - 2√3 = 0

2 sinθ ( sinθ - 2 ) - √3 ( sinθ - 2 ) = 0

( 2sinθ - √3 ) . ( sinθ - 2 ) = 0

Either ( 2sinθ - √3 ) = 0 or ( sinθ - 2 ) = 0 

( sinθ - 2 ) = 0  is not possible .

So, 2sinθ - √3  = 0

sinθ = \(\frac{ √3}{2}\)

{ we know, sin60º = \(\frac{ √3}{2}\) }

So, θ = 60º