Target Exam

CUET

Subject

General Test

Chapter

Quantitative Reasoning

Topic

Algebra

Question:

If ab + bc + ca = 12 and a2 + b2 + c2 = 40, then possible value of \(\frac{1}{2}\) (a + b +c) [(a - b)2 + (b - c)2 + (c - a)2] is:

Options:

220

224

326

172

Correct Answer:

224

Explanation:

ab + bc + ca = 12

a2 + b2 + c2 = 40

⇒ (a + b + c)= [a2 + b2 + c2 + 2(ab + bc + ca)]

                       = 40 + 2 × 12 = 40 + 24 = 64

⇒ (a + b +c) = 8

Now,

⇒ \(\frac{1}{2}\) (a + b +c) [(a - b)2 + (b - c)2 + (c - a)2]

= \(\frac{1}{2}\) (a + b +c) [2(a2 + b2 + c2) - 2(ab + bc + ca)]

= \(\frac{1}{2}\) × 8 [(2 × 40) - (2 × 12)]

= 4 (80 - 24) = 224