If ab + bc + ca = 12 and a2 + b2 + c2 = 40, then possible value of \(\frac{1}{2}\) (a + b +c) [(a - b)2 + (b - c)2 + (c - a)2] is: |
220 224 326 172 |
224 |
ab + bc + ca = 12 a2 + b2 + c2 = 40 ⇒ (a + b + c)2 = [a2 + b2 + c2 + 2(ab + bc + ca)] = 40 + 2 × 12 = 40 + 24 = 64 ⇒ (a + b +c) = 8 Now, ⇒ \(\frac{1}{2}\) (a + b +c) [(a - b)2 + (b - c)2 + (c - a)2] = \(\frac{1}{2}\) (a + b +c) [2(a2 + b2 + c2) - 2(ab + bc + ca)] = \(\frac{1}{2}\) × 8 [(2 × 40) - (2 × 12)] = 4 (80 - 24) = 224 |