Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Three-dimensional Geometry

Question:

By using equations of the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z-3=0$, answer the following questions.

The plane 10x + 2y – 11z – 3 = 0 intersect the Z-axis at the point

Options:

$\left(0,0, \frac{3}{10}\right)$

$\left(0,0, \frac{3}{2}\right)$

$\left(0,0, \frac{3}{11}\right)$

$\left(0,0,-\frac{3}{11}\right)$

Correct Answer:

$\left(0,0,-\frac{3}{11}\right)$

Explanation:

at z-axis ,  x = 0 ,  y = 0

so  10(0) + 2(0) - 11z - 3 =0

so  -11z - 3 = 0

z = $\frac{-3}{11}$

(x, y, z) = $\left(0,0,-\frac{3}{11}\right)$ → intersection with z-axis

Option: D