By using equations of the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z-3=0$, answer the following questions. |
The plane 10x + 2y – 11z – 3 = 0 intersect the Z-axis at the point |
$\left(0,0, \frac{3}{10}\right)$ $\left(0,0, \frac{3}{2}\right)$ $\left(0,0, \frac{3}{11}\right)$ $\left(0,0,-\frac{3}{11}\right)$ |
$\left(0,0,-\frac{3}{11}\right)$ |
at z-axis , x = 0 , y = 0 so 10(0) + 2(0) - 11z - 3 =0 so -11z - 3 = 0 z = $\frac{-3}{11}$ (x, y, z) = $\left(0,0,-\frac{3}{11}\right)$ → intersection with z-axis Option: D |