Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Definite Integration

Question:

$\int\limits_0^{2 \pi} \frac{x \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x, n>0$, is equal to

Options:

$\pi$

$2 \pi$

$\pi^2$

$\frac{1}{2} \pi^2$

Correct Answer:

$\pi^2$

Explanation:

Let $I=\int\limits_0^{2 \pi} \frac{x \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$           ...(i)

Using property $\int\limits_0^a f(x)dx = \int\limits_0^a f(a-x)dx$, we have

$I_n =\int\limits_0^{2 \pi} \frac{(2 \pi-x) \sin ^{2 n}(2 \pi-x)}{\sin ^{2 n}(2 \pi-x)+\cos ^{2 n}(2 \pi-x)} d x$

$\Rightarrow I_n =\int\limits_0^{2 \pi} \frac{(2 \pi-x) \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$

Adding (i) and (ii), we get

$2 I_n=2 \pi \int\limits_0^{2 \pi} \frac{\sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$

$\Rightarrow I_n=\pi \int\limits_0^{2 \pi} \frac{\sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$

$\Rightarrow I_n=2 \pi \int\limits_0^\pi \frac{\sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$             [Using property $\int\limits_0^{2 a} f(x) d x=\left\{\begin{array}{cl}2 \int\limits _0^a f(x) d x & , \text { if } f(2 a-x)=f(x) \\ 0, & \text { if } f(2 a-x)=-f(x)\end{array}\right.$]

$\Rightarrow I_n=4 \pi \int\limits_0^{\pi / 2} \frac{\sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$             [Using property $\int\limits_0^{2 a} f(x) d x=\left\{\begin{array}{cl}2 \int\limits _0^a f(x) d x & , \text { if } f(2 a-x)=f(x) \\ 0, & \text { if } f(2 a-x)=-f(x)\end{array}\right.$]

$\Rightarrow I_n=4 \pi \times \frac{\pi}{4}=\pi^2$