\(\int \frac{dx}{x\left(x^2+1\right)}\) equals |
\(\log\left|x\right|+\frac{1}{2}\log \left(x^2+1\right)+C\) \(-\log\left|x\right|+\frac{1}{2}\log \left(x^2+1\right)+C\) \(\log\left|x\right|-\frac{1}{2}\log \left(x^2+1\right)+C\) None |
\(\log\left|x\right|-\frac{1}{2}\log \left(x^2+1\right)+C\) |
$I = \int{\frac{dx}{x(x^2+ 1)}}=\int\frac{x^{-3}}{1+x^{-2}}dx$ $1+x^{-2}=y$ $dy=-2x^{-3}dx$ so $I=-\frac{1}{2}\int\frac{dy}{y}=-\frac{1}{2}\log(y)+C$ $=-\frac{1}{2}\log(1+x^{-2})+C$ $=\log x-\frac{1}{2}\log(x^2+1)+C$ |