CUET Preparation Today
CUET
-- Mathematics - Section B1
Matrices
If $det. (A-B) ≠0, A^4=B^4, C^3A=C^3B$ and $B^3A = A^3B$, then find the value of $det. (A^3+ B^3 + C^3)$.
0
1
2
3
$(A^3+ B^3 + C^3)(A-B)$
$=A^4-A^3B+B^3A-B^4+C^3A-C^3B=O$
$∴det.((A^3+ B^3 + C^3)(A-B))=0$
$⇒det.(A^3+ B^3 + C^3)=0$ as $det.(A-B)≠0$