Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Continuity and Differentiability

Question:

The value of $k$ for which the function $f(x) =\left\{\begin{matrix}\frac{1-\cos 8x}{16x^2},&\text{if x≠0}\\k,&\text{if x=0}\end{matrix}\right.$ is continuous at $x=0$ is:

Options:

0

2

-2

1

Correct Answer:

2

Explanation:

The correct answer is Option (2) → 2

k = $\lim_{x \to 0} \frac{1 - \cos 8x}{16x^2}$

Since numerator and denominator $\to 0$ as $x \to 0$, apply L’Hôpital’s Rule:

Derivative of numerator = $8 \sin 8x$

Derivative of denominator = $32x$

So,

$k = \lim_{x \to 0} \frac{8 \sin 8x}{32x}$

$= \frac{1}{4} \times \lim_{x \to 0} \frac{\sin 8x}{x}$

$= \frac{1}{4} \times 8$

$= 2$