Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Inverse Trigonometric Functions

Question:

The value of $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)+2 \cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$ is:

Options:

$17 \frac{\pi}{12}$

$37 \frac{\pi}{12}$

$-25 \frac{\pi}{12}$

$-31 \frac{\pi}{12}$

Correct Answer:

$17 \frac{\pi}{12}$

Explanation:

The correct answer is Option (1) → $17 \frac{\pi}{12}$

$\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)+2 \cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$

$=\tan ^{-1}\left(-\tan \frac{\pi}{4}\right)+2 \cos ^{-1}\left(-\cos \frac{\pi}{6}\right)$

$=\tan ^{-1}\left(\tan\left(-\frac{\pi}{4}\right)\right)=2 \cos ^{-1}\left(\cos \frac{5\pi}{6}\right)$

$=-\frac{\pi}{4}+2×\frac{5\pi}{6}=\frac{17\pi}{12}$