A Convex lens having a power of one dioptre is made of glass having refractive index 1.48. What will be the power of convex lens made of material with refractive index 1.6 and same dimension |
1.2 D 1.25 D 1.4 D 1.6 D |
1.25 D |
The correct answer is Option (2) → 1.25 D $P=\frac{1}{f}=(μ-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ [Lens maker formula] where, P = Power of lens μ = Refractive index $R_1$ and $R_2$ = Radius of curvature of lens. Now, $P_1=\frac{1}{f_1}=(μ_1-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ $P_2=\frac{1}{f_2}=(μ_2-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ [Dimension same] $\frac{P_1}{P_2}=\frac{μ_1-1}{μ_2-1}$ $⇒P_2=P_1\frac{μ_2-1}{μ_1-1}$ $P_2=1.\frac{1.6-1}{1.48-1}$ $=1.25D$ |