In a series of 4 trials, the probability of getting two successes is equal to the probability of getting three successes. The probability of getting at least one success is: |
$\frac{609}{625}$ $\frac{16}{625}$ $\frac{513}{625}$ $\frac{112}{625}$ |
$\frac{609}{625}$ |
The correct answer is Option (1) → $\frac{609}{625}$ In an binomial distribution, $P(X=k)=\begin{pmatrix}n\\k\end{pmatrix}p^k (1-p)^{n-k}$ $P(X=2)=P(X=3)$ [Given] $P(X=2)=\begin{pmatrix}4\\2\end{pmatrix} p^2 (1-p)^2=6p^2(1-p)^2$ $P(X=3)=\begin{pmatrix}4\\3\end{pmatrix} p^3 (1-p)=4p^3(1-p)$ $6p^2(1-p)^2=4p^3(1-p)$ $3(1-p)=2p$ $3=5p$ $p=\frac{3}{5}$ $P(X≥1)=1-p(X=0)$ $P(X=0)=\begin{pmatrix}4\\0\end{pmatrix} p^0 (1-p)^4=(1-p)^4$ $=(1-\frac{3}{5})^4$ $=\frac{16}{625}$ $∴1-P(X=0)$ $=1-\frac{16}{625}=\frac{609}{625}$ |