The point on the curve $x^2=2 y$ in the I quadrant which is nearest to the point (0, 5) is: |
$(2 \sqrt{2}, 0)$ $(0,0)$ $(2 \sqrt{2}, 4)$ $(2,2)$ |
$(2 \sqrt{2}, 4)$ |
The correct answer is Option (3) → $(2 \sqrt{2}, 4)$ let point on curve be (x, y) so distance $d(x)=\sqrt{(x-0)^2+(y-5)^2}$ as from curve $y=\frac{x^2}{2}$ so $d(x)=\sqrt{x^2+(\frac{x^2}{2}-5)^2}$ we need to minimise d(x) so minimising $f(x)=x^2+(\frac{x^2}{2}-5)^2$ also works $f'(x)=2x+2(\frac{x^2}{2}-5)×\frac{2x}{2}=0$ $f'(x)=2x+x^3-10x=0$ or $x^3=8x$ so $x=0,2\sqrt{2}$ $f''(x)=3x^2-8$ $f''(0)=-8<0$ (point of maxima) $f''(2\sqrt{2})=16>0$ (point of minima) at $x=2\sqrt{2},y=4$ point nearest to (0, 5) is $(2 \sqrt{2}, 4)$ |