The probability distribution of a discrete random variable X is defined as : $P(X=x)=\left\{\begin{matrix}3kx & \text{for x = 1, 2, 3}\\5k(x+2) & \text{for x = 4, 5}\\0 & otherwise \end{matrix}\right.$ The mean of the distribution is : |
$\frac{92}{23}$ $\frac{413}{113}$ $\frac{65}{34}$ $\frac{10}{83}$ |
$\frac{413}{113}$ |
The correct answer is Option (2) → $\frac{413}{113}$ Sum of all probabilities must be 1. $3k+5k(2+2)+5k(3+2)+5k(4+2)+5k(5+2)=1$ $⇒k=\frac{1}{113}$ $E(X)=∑xP(X=x)$ $=1×3×\frac{1}{113}+2×20×\frac{1}{113}+3×25×\frac{1}{113}+4×30×\frac{1}{113}+5×35×\frac{1}{113}$ $=\frac{413}{113}$ |