Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Determinants

Question:

Consider the system of equations

$(a-1) x-y-z=0$

$x-(b-1) y + z=0$

$x+y-(c-1)z=0$

where a, b and c are non-zero real numbers.

Statement-1: If $x, y, z$ are not all zero, then $ab + bc + ca = abc$

Statement-2: $abc ≥ 27$

Options:

Statement-1 is True, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. 

Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1.

Statement-1 is True, Statement-2 is False.

Statement-1 is False, Statement -2 is True.

Correct Answer:

Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1.

Explanation:

It is given that x, y, z are not all zero. So, the given system of equations has a non-trivial solutions.

$∴\begin{vmatrix}a-1&-1&-1\\1&-(b-1)&1\\1&1&-(c-1)\end{vmatrix}=0$

$⇒\begin{vmatrix}a&0&-1\\1&-b&1\\c&c&1-c\end{vmatrix}=0$  [Applying $C_1→C_1-C_3,C_2 →C_2-C_3$]

$⇒a (-b+bc-c) -(0 + bc) = 0$

$⇒ab + bc + ac = abc$

Using A.M. G.M., we have

$⇒\frac{ab + bc + ca}{3}≥(abc)^{2/3}$

$⇒abc≥3(abc)^{2/3}⇒abc≥27$

So, both statements are true.