If a random variable X follows binomial distribution with mean 5 and variance $\frac{5}{2},$ then $P(X≤9)$ is : |
$\frac{1023}{1024}$ $\frac{63}{64}$ $\frac{1}{64}$ $\frac{1}{1024}$ |
$\frac{1023}{1024}$ |
The correct answer is Option (1) → $\frac{1023}{1024}$ Given that X follow a binomial distribution X ∼ B in (n, p) Mean, $np=5$ ....(1) Variance = $np(1-p)=\frac{5}{2}$ ....(2) Using (1) and (2), $⇒5(1-p)=\frac{5}{2}$ $⇒p=1-\frac{1}{2}=\frac{1}{2}$ From eq. (1) $n×\frac{1}{2}$ $n=10$ $P(X≤9)=1-P(X=10)$ $=1-{^{10}C}_{10}(\frac{1}{2})^{10}(1-\frac{1}{2})^0$ $=1-\frac{1}{2^{10}}=\frac{1023}{1024}$ |