Area bounded by the curve $y=\cos ^{-1} x$ and the lines $x=0, x=1$ is |
1 2 -1 -2 |
1 |
The correct answer is Option (1) - 1 $y=\cos ^{-1} x,x=0, x=1$ area = $\int\limits_0^1\cos^{-1}xdx$ $\cos y=x$ at $x = 0$, at $x = 1$ $y=\frac{π}{2},y=0$ for principle value so area = $+\int\limits_0^\frac{π}{2}\cos ydy$ $=[\sin y]_0^\frac{π}{2}=1$ unit |