CUET Preparation Today
CUET
-- Mathematics - Section A
Applications of Derivatives
Let $f(x)=x^3-6 x^2+9 x+18$, then f(x) is strictly decreasing in
$(-\infty, 1]$
$[3, \infty)$
$(-\infty, 1] \cup[3, \infty)$
$[1,3]$
$f(x) =x^3-6 x^2+9 x+18$
$f'(x) =3 x^2-12 x+9$
$=3\left(x^2-4 x+3\right)$
$=3(x-1)(x-3) \leq 0$
$x \in[1,3]$