A wire has a resistance of 3.0 Ω at 30 °C and a resistance of 4.5 Ω at 100 °C. The temperature coefficient of resistance of the wire is |
$0.0032\, °C^{-1}$ $0.0071\, °C^{-1}$ $0.012\, °C^{-1}$ $0.126\, °C^{-1}$ |
$0.0071\, °C^{-1}$ |
The correct answer is Option (2) → $0.0071\, °C^{-1}$ Given: $R_1 = 3.0 \, \Omega$ at $T_1 = 30^\circ \text{C}$ $R_2 = 4.5 \, \Omega$ at $T_2 = 100^\circ \text{C}$ Relation: $R_2 = R_1 [1 + \alpha (T_2 - T_1)]$ Substitute values: $4.5 = 3.0 [1 + \alpha (100 - 30)]$ $4.5 = 3.0 [1 + 70 \alpha]$ $\frac{4.5}{3.0} = 1 + 70 \alpha$ $1.5 = 1 + 70 \alpha$ $70 \alpha = 0.5$ $\alpha = \frac{0.5}{70} = \frac{1}{140}$ $\alpha = 0.00714 \, /^\circ \text{C}$ Final Answer: Temperature coefficient of resistance $\alpha = 0.00714 \, /^\circ \text{C}$ |