The angle of intersection between the curves $y=4-x^2$ and $y=x^2 $ is : |
$\frac{\pi }{2}$ $\frac{\pi }{4}$ $tan^{-1}\frac{4}{3}$ $tan^{-1}\frac{4\sqrt{2}}{7}$ |
$tan^{-1}\frac{4\sqrt{2}}{7}$ |
The correct answer is option (4) → $\tan^{-1}\frac{4\sqrt{2}}{7}$ $y=4-x^2$ ...(1) $y=x^2$ ...(2) finding intersection point $4-x^2=x^2⇒x^2=2⇒x=±\sqrt{2}$ $y=2$ from (1) $\frac{dy}{dx}=m=-2x$ from (2) $\frac{dy}{dx}=2x=n$ angle $\tan θ=\left|\frac{m-n}{1+mn}\right|$ at $x=\sqrt{2}$ $θ=\tan^{-1}\left|\frac{2\sqrt{2}+2\sqrt{2}}{1+(-8)}\right|$ $=\tan^{-1}\frac{4\sqrt{2}}{7}$ even with $x = -\sqrt{2}$ $θ=\tan^{-1}=\frac{4\sqrt{2}}{7}$ |