Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Definite Integration

Question:

If {x} denotes the fractional part of x, then $\int\limits_0^x\left(\{x\}-\frac{1}{2}\right) d x$ is equal to

Options:

$\frac{1}{2}\{x\}(\{x\}+1)$

$\frac{1}{2}\{x\}(\{x\}-1)$

$\{x\}(\{x\}-1)$

$\{x\}(\{x\}+1)$

Correct Answer:

$\frac{1}{2}\{x\}(\{x\}-1)$

Explanation:

We have, $\{x\}=x-[x]$

Let $k \leq x<k+1$, where $k \in N$. Then,

$I =\int\limits_0^x\left(\{x\}-\frac{1}{2}\right) d x=\int\limits_0^x\left(x-[x]-\frac{1}{2}\right) d x$

$\Rightarrow I =\int\limits_0^x(x-[x]) d x-\int\limits_0^x \frac{1}{2} d x$

$\Rightarrow I =\int\limits_0^k(x-[x]) d x+\int\limits_k^x(x-[x]) d x-\frac{x}{2}$

$\Rightarrow I =\frac{k}{2}+\int\limits_k^x(x-k) d x-\frac{x}{2}$

$\Rightarrow I=\frac{k}{2}+\left(\frac{x^2}{2}-k x\right)-\left(\frac{k^2}{2}-k^2\right)-\frac{x}{2}$

$\Rightarrow I=\frac{x^2}{2}-k x+\frac{k(k+1)}{2}-\frac{x}{2}$

$\Rightarrow I=\frac{1}{2}\left(x^2-2 k x+k^2\right)+\frac{1}{2}(k-x)$

$\Rightarrow I=\frac{1}{2}(x-k)^2-\frac{1}{2}(x-k)$

$\Rightarrow I=\frac{1}{2}(x-[x])^2-\frac{1}{2}(x-[x])$

$\Rightarrow I=\frac{1}{2}\{x\}^2-\frac{1}{2}\{x\}=\frac{1}{2}\{x\}(\{x\}-1)$