Let $A = [a_{ij}]_{n×n}$ and $B = [b_{ij}]_{n×n}$ Then which of the following is/are true? (A) $AB = BA$ Choose the correct answer from the options given below: |
(A) and (D) only (B) and (C) only (B), (C) and (D) only (A) only |
(B) and (C) only |
The correct answer is Option (2) → (B) and (C) only Given square matrices $A=[a_{ij}]_{n\times n}$ and $B=[b_{ij}]_{n\times n}$, evaluate each statement. (A) $AB=BA$ $\text{Not necessarily true. Example: } A=\begin{pmatrix}0 & 1\\[4pt]0 & 0\end{pmatrix},\ B=\begin{pmatrix}0 & 0\\[4pt]1 & 0\end{pmatrix}.$ $AB=\begin{pmatrix}1 & 0\\[4pt]0 & 0\end{pmatrix}\neq BA=\begin{pmatrix}0 & 0\\[4pt]0 & 1\end{pmatrix}.$ (B) $(AB)^{-1}=B^{-1}A^{-1}$ If $A$ and $B$ are invertible (so $(AB)^{-1}$ exists), then $ (AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A I A^{-1} = I $ and similarly $(B^{-1}A^{-1})(AB)=I$. Hence the identity holds whenever $A,B$ are invertible. (C) $(AB)^T = B^T A^T$ Transpose identity is valid for all conformable matrices. Direct verification: Entry at $(i,j)$ of $(AB)^T$ equals entry $(j,i)$ of $AB$, which is $\sum_k a_{jk} b_{ki}$, while entry $(i,j)$ of $B^T A^T$ equals $\sum_k b_{ki} a_{jk}$, the same sum. Thus equality holds. (D) $AB=0 \Rightarrow A=0$ or $B=0$ False in general. Counterexample: $A=\begin{pmatrix}1 & 0\\[4pt]0 & 0\end{pmatrix},\ B=\begin{pmatrix}0 & 0\\[4pt]0 & 1\end{pmatrix}.$ $AB=\begin{pmatrix}0 & 0\\[4pt]0 & 0\end{pmatrix}$ while $A\neq 0$ and $B\neq 0$. |