The maximum value of $\frac{\log x^3}{3 x}$ occurs at x = ________. |
e $\frac{1}{e}$ 3e $\frac{3}{e}$ |
e |
The correct answer is Option (1) → e $f(x)=\frac{\log x^3}{3x}$ for critical points, $f'(x)=0$ $⇒f'(x)=\frac{\frac{1}{x^3}×3x^2×3x-3\log x^3}{(3x)^2}$ $=\frac{9-9\log x}{(3x)^2}=\frac{1-\log x}{x}=0$ $⇒\log x=1$ $⇒x=e$ Now for $x=e$ to be maximum, $f''(x)<0$, $f''(x)=\frac{-\frac{1}{x}×x-(1-\log x)}{x^2}=\frac{-2+\log x}{x^2}$ $f''(x=e)=\frac{-2\log e}{e^2}=\frac{-2+1}{e^2}=\frac{-1}{e^2}<0$ $∴x=e$ → Maximum occurs |