Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Indefinite Integration

Question:

Match List – I with List – II.

LIST I

LIST II

 A. $\int x^2 e^{x^3} d x$ 

 I. $\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+ C$ + C is an arbitrary constant 

 B. $\int e^x\left(\tan ^{-1} x+\frac{1}{1+x^2}\right) d x$ 

 II. $\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+ C$ + C is an arbitrary constant 

 C. $\int \frac{d x}{a^2-x^2}$ 

 III. $\frac{1}{3} e^{x^3}+ C$ + C is an arbitrary constant 

 D. $\int \frac{d x}{x^2+a^2}$ 

 IV. $e^x \tan ^{-1} x+ C$ + C is an arbitrary constant 

Choose the correct answer from the options given below:

Options:

A-I, B-IV, C-II, D-III

A-II, B-III, C-IV, D-I

A-III, B-IV, C-I, D-II

A-IV, B-I, C-III, D-II

Correct Answer:

A-III, B-IV, C-I, D-II

Explanation:

The correct answer is Option (3) → A-III, B-IV, C-I, D-II

(A) $\frac{3}{3}\int x^2 e^{x^3} d x=\frac{e^{x^3}}{3}+ C$ (III)

(B) $\int e^x\left(\underset{f(x)}{\underbrace{\tan ^{-1} x}}+\underset{f'(x)}{\underbrace{\frac{1}{1+x^2}}\right) d x=e^x \tan ^{-1} x+ C$ (IV)

(C) $\int \frac{d x}{a^2-x^2}=\frac{1}{2a}\int\left(\frac{1}{a-x}+\frac{1}{a+x}\right)dx$

$=\frac{1}{2a}(\log|a+x|-\log|a-x|)=\frac{1}{2a}\log|\frac{a+x}{a-x}|+C$ (I)

(D) $\int \frac{d x}{x^2+a^2}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+ C$ (II)