A parallel plate capacitor having area A and separated by distance d is filled by copper plate of thickness b. The new capacitance is: |
$\frac{\varepsilon_0 A}{d+2 b}$ $\frac{\varepsilon_0 A}{2 d}$ $\frac{\varepsilon_0 A}{d-b}$ $\frac{2 \varepsilon_0 A}{d+2 b}$ |
$\frac{\varepsilon_0 A}{d-b}$ |
The correct answer is Option (3) → $\frac{\varepsilon_0 A}{d-b}$ The effective seperation between the plates is - $d_{effective}=d-b$ Now, The capacitance of a parallel plate capacitor is - $C=\frac{ε_0A}{d_{effective}}=\frac{\varepsilon_0 A}{d-b}$ |