Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Differential Equations

Question:

If $\phi(x)$ is a differentiable function, then the solution of the differential equation
$d y+\left\{y \phi'(x)-\phi(x) \phi'(x)\right\} d x=0$, is

Options:

$y=\{\phi(x)-1\}+C e^{-\phi(x)}$

$y \phi(x)=\{\phi(x)\}^2+C$

$y e^{\phi(x)}=\phi(x) e^{\phi(x)}+C$

$y-\phi(x)=\phi(x) e^{-\phi(x)}$

Correct Answer:

$y=\{\phi(x)-1\}+C e^{-\phi(x)}$

Explanation:

We have,

$d y+\left\{y \phi'(x)-\phi(x) \phi'(x)\right\} d x=0$

$\Rightarrow \frac{d y}{d x}+\phi'(x) . y=\phi(x) \phi'(x)$       .....(i)

This is a linear differential equation with

Integrating factor = $e^{\int \phi'(x) d x}=e^{\phi(x)}$

Multiplying (i) by $\phi(x)$ and integrating, we get

$y e^{\phi(x)} =\int \phi(x) \phi'(x) e^{\phi(x)} d x$

$\Rightarrow y e^{\phi(x)} =\int e^{\phi(x)} \phi(x) \phi'(x) d x$

$\Rightarrow y e^{\phi(x)}=\int \phi(x) e^{\phi(x)} \phi'(x) d x$

$\Rightarrow y e^{\phi(x)}=\phi(x) e^{\phi(x)}-\int \phi'(x) e^{\phi(x)} d x$

$\Rightarrow y e^{\phi(x)}=\phi(x) e^{\phi(x)}-e^{\phi(x)}+C$

$\Rightarrow y=(\phi(x)-1)+C e^{-\phi(x)}$