If $f(x)=\cos 3 x, 0 ≤ x ≤ \frac{\pi}{2}$, then : (A) f is strictly increasing on $\left[0, \frac{\pi}{3}\right)$ Choose the correct answer from the options given below: |
(C) and (D) only (A) and (B) only (A) only (E) only |
(C) and (D) only |
The correct answer is Option (1) → (C) and (D) only $f(x)=\cos 3 x$ $f'(x)=-3\sin 3x=0$ $⇒\sin 3x=0$ $3x=0, \pi$ $x=0,\frac{\pi}{3}$ $f(x)$ increasing on $\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$ and decreasing on $\left[0, \frac{\pi}{3}\right)$ |