The integral of the function $\frac{1}{9-4x^2}$ is: |
$\frac{1}{22}\log_e\left|\frac{3+x}{3-x}\right|+C$, where C is an arbitrary constant $\frac{1}{12}\log_e\left|\frac{3+2x}{3-2x}\right|+C$, where C is an arbitrary constant $\frac{1}{2}\log_e\left|\frac{7+x}{7-x}\right|+C$, where C is an arbitrary constant $\frac{1}{12}\log_e\left|\frac{3-2x}{3+2x}\right|+C$, where C is an arbitrary constant |
$\frac{1}{12}\log_e\left|\frac{3+2x}{3-2x}\right|+C$, where C is an arbitrary constant |
The correct answer is Option (2) → $\frac{1}{12}\log_e\left|\frac{3+2x}{3-2x}\right|+C$, where C is an arbitrary constant $\int\frac{1}{9-4x^2}dx=\frac{1}{4}\int\frac{1}{(\frac{3}{2})^2-x^2}dx$ $=\frac{1}{4}×\frac{2}{2×3}\log\left|\frac{\frac{3}{2}+x}{\frac{3}{2}-x}\right|+C$ $=\frac{1}{12}\log\left|\frac{3+2x}{3-2x}\right|+C$ |